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gas detection systems based on direct absorption, photothermal, photoacoustic, and stimulated 
Raman spectroscopies. 
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1. Introduction 

Gas detection has increasingly important 

application in environmental monitoring, industrial 

safety protection, medical instruments, etc. Among 

many different technologies of gas sensing, laser 

spectroscopy that makes use of the “finger-print” 

spectral features of gas molecules offers unique 

advantage in specificity [1]. Traditional free-space 

spectroscopic systems employ discrete optical 

components, which have limitations in size and 

long-term stability, and require precision alignment 

during construction. The use of optical fibers for 

light transmission simplifies the optical alignment 

and enables flexible systems as well as remote 

detection capability [2]. However, the sensing 

elements, which are the platforms of light-gas 

interaction, are mostly bulky free space gas cells.  

Attempt has been made to construct 

all-optical-fiber gas cells [3, 4], which enable 

compact sensing elements as well as easy integration 

into optical fiber systems. D-shaped optical fibers 

were studied for gas detection by exploiting the 

evanescent field extending into the surrounding air. 

However, the sensitivity is low due to the very small 

fraction of evanescent field in air [3]. 

Recent development of micro- and nano- 

structured optical fibers (MNOFs) opens the 

possibility of constructing all-fiber gas cells for high 

sensitivity sensing [5–9]. MNOFs are typically 

single material (silica) fibers with air-holes running 

along the length of the fiber. They can be designed 

to support a propagation mode with significant 

amount of mode power in air, enabling efficient 

light-gas interaction in the fiber over a long distance. 

The mode field area of an MNOF is much smaller 

than that of a typical free space beam, which would 

enhance the sensitivity of non-linear spectroscopic 
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sensors. In addition, MONFs have novel optical, 

thermal, and acoustic properties, which could enable 

new sensing concepts.  

In this article, we review recent progress in the 

development of MNOF gas cells and all-fiber gas 

sensing systems based on direct absorption, 

photothermal, photoacoustic and Raman 

spectroscopy principles, and discuss possible future 

research directions.  

2. MNOF gas cells 

An optical fiber gas cell should allow the 

maximal overlap of its mode field with the gas 

sample. Two broad categories of MNOFs may be 

used for this purpose: micro-structured hollow-core 

fibers (HCFs) that support a light mode in the 

air-core [10–13] and nanoscale solid-core fibers that 

have a significant fraction of evanescent field in the 

surrounding air [8, 9].  

2.1 Micro-structured HCF gas cells 

Figure 1 shows two types of micro-structured 

HCFs that may be used for gas cells. They are 

photonic-bandgap (PBG) HCFs and anti-resonant 

(AR) HCFs. A PBG-HCF transmits light over a 

narrow spectral range, from tens to a few hundred 

nanometers, determined by the PBG of the periodic 

air-silica cladding [5]. The central wavelength of the 

transmission band can be designed to be from the 

visible to the near infrared, and the propagation loss 

demonstrated ranges from ~1 dB/m in the visible to 

~10 dB/km around 2 µm [10–12]. A PBG-HCF can 

be bent down to a few centimeters in diameter 

without introducing significant loss [11]. An 

AR-HCF guides light via the “anti-resonant” and 

“prohibited-coupling” principles, which typically 

has much broader transmission bands [6, 7]. The 

propagation loss of AR-HCFs has been reduced 

significantly recently to the level comparable to 

silica single mode fibers (SMFs) between 600 nm 

and 1 100 nm [13] and 0.28 dB/km from 1 500 nm–  

1 600 nm [14] by use of a nested anti-resonant 

node-less fiber (NANF) structure as shown in    

Fig. 1(c). Comparing with PBG-HCFs, the current 

AR-HCFs are still quite sensitive to bending.  

 
(a) 

 
(b) 

 
(c) 

Fig. 1 Cross-sections of (a) a PBG-HCF, (b) a single ring 
node-less AR-HCF, and (c) a nested node-less AR HCF or 
NANF.  

An HCF can confine a propagating light mode 

and a gas sample simultaneously in the hollow-core, 

and light-sample overlapping approaches 100%. The 

length of an HCF gas cell can be from centimeters to 
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tens of meters, and highly sensitive and yet compact 

gas sensors could be developed by coiling a length 

of the HCF into small loops. Gas filling into the 

hollow-core would have negligible effect on the 

light confinement and the modal properties of the 

HCFs [15–17] since most gas species have refractive 

indexes very close to 1.  

Light coupling into an HCF may be achieved by 

using free-space optics. Here we are interested in 

all-fiber gas cells made by splicing the HCF to silica 

SMF pigtails [17–21]. Splicing avoids the use of 

discrete optical components, simplifies the optical 

alignments, improves mechanical stability, and 

makes it more convenient to integrate with 

fiber-optic circuits. Figure 2 shows two types of 

all-fiber gas cells made by fusion splicing and 

mechanical splicing an HCF with SMFs.  

Fusion splice 

SMF SMFHCF

Fusion splice

(a)  

 
Mechanical splice 

SMF: single mode 
fiber 

SMF

HCF

Gas out 

(b) 

SMF 
Mechanical splice

Gas in 

 
Fig. 2 All-fiber gas cells made by (a) fusion splicing and   

(b) mechanical splicing an HCF with SMFs. 

An important issue related to the use of long 

HCF gas cells is the time needed to fill a gas sample 

into the hollow-core. For gas cells made of 

mechanical splicing [Fig. 2(b)], gas filling may be 

achieved via the ends of the HCF through the air 

gaps at the SMF-HCF joints. However, under 

free-diffusion condition, it would take hours to fill a 

1-meter-long HCF [22]. Pressurization speeds up the 

gas filling [23], however it increases the system size 

and complexity. An alternative is to fabricate 

side-holes or micro-channels along the HCF and to 

fill gas into the hollow-core via these 

micro-channels [24–27]. Figure 3 illustrates the 

cross-sections of a PBG-HCF [28] and an AR-HCF 

[29] with a micro-channel drilled by use of 

femtosecond laser micro-machining. With optimized 

fabrication parameters, hundreds of high-quality 

micro-channels have been made along a PBG-HCF 

with average loss of less than 0.01 dB per channel 

[28]. The small loss is a result of very small fraction 

of light field near and within the micro-structured 

air-silica cladding. For AR-HCFs, the additional loss 

due to introduction of micro-channels or even a long 

lateral cut on the outer silica tube is negligible, since 

the outer tube is not part of the light-guiding 

structure [30]. 

Micro-channels 

SMFHCF 

(a) 

SMF

 

 
(b)                          (c) 

Fig. 3 HCF gas cell with micro-channels: (a) side view of the 
gas cell, (b) a PBG-HCF [28], and (c) an AR-HCF [29]. 

2.2 Nanoscale solid-core fiber gas cells 

A thin-silica-core with air-clad guides a light 

mode with a significant amount of evanescent field 

in air. Two examples of such gas cells are a 

nano-fiber (NF) sealed within a small-bore tube [31] 

and a suspended core fiber (SCF) [9, 32]. An NF 

may be tapered drawn from a standard SMF by 

using the “flame-brushing” technique [33], and the 

diameter of the tapered waist region can be as small 

as 500 nm with length up to 10 cm. Figure 4(a) 

depicts a tapered NF, illustrating the significant 

amount of light field in air and the much smaller 

mode field area as compared with the SMF. The 

tapered NF typically has a circular cross-section [31] 
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but can also be made to have an elliptical cross 

section [34], as shown in Fig. 4(b). The elliptical NF 

can maintain a linear state of polarization and can be 

made by removing parts of the cladding of an SMF 

using a femtosecond laser before tapering. An SCF 

may be regarded as an NF core hanging at the center 

of the fiber by nanometer thin structs. SCF gas cells 

have been made by inflating selected air-holes of a 

photonic crystal fiber (PCF), and different core 

shapes can be made by inflating different air-holes. 

Figure 5 shows two examples of the SCFs made by 

inflating three and four of the inner most air-holes of 

a large mode area PCF from NKT Photonics [12]. 

The diameter of the inscribed core can be as small as 

900 nm with tapered waist region up to 5 centimeters. 

The thin core of the SCF is naturally protected from 

external contamination and seamlessly integrated to 

the pristine PCF, which can be further spliced to 

SMFs with low loss [35]. SCFs with longer length 

may be directly drawn from a fiber drawing tower 

[9], although it may be challenging to splice a 

nanoscale-core SCF to a standard SMF with low 

loss.  

 
(a) 

20 kV   X15,000 1 m 09 30 SEI
 

(b) 

Fig. 4 NF gas cells: (a) mode field in a tapered NF and (b) an 
NF with elliptical cross-section [34]. 

 SCF region 

SMF

(a) 

SMF

Fiber core 

SMFPCFPCF

 

    
(b) 

Fig. 5 SCF gas cells: (a) an SCF microcell made by inflating 
selected air-holes of a PCF and (b) cross-sections of two SCF 
microcells [32]. 
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(b)                        (c) 

Fig. 6 Comparing open path, HCF, and NF gas cells [36]. 

To compare different gas cells, we may define an 

effective interaction length L and a non-linear 

parameter L/A. Here, L is the length of the MNOF, 

 is the fraction of mode power in air, and A is the 
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mode field area. For linear direct absorption 

spectroscopy, the signal is proportion to L and an 

HCF gas cell may be used to achieve high sensitivity 

since it can be made sufficiently long without a 

significant increase in size. For nonlinear interaction 

such as stimulated Raman scattering, the signal is 

proportional to L/A. Compared with the free-space 

gas cell shown in Fig. 6(a), the HCF gas cell in   

Fig. 6(b) has a smaller mode field area A extending 

over a much longer distance, which enhances the 

nonlinear interaction and hence enables higher 

detection sensitivity. The NF gas cell shown in Fig. 

6(c) has an even smaller mode field area, i.e., ~100 

times smaller than that of the HCF and ~104 times 

smaller than that of the free space beam, which 

would enhance enormously the nonlinear interaction 

per unit length. However, the length of an NF 

taper-drawn from an SMF is typically limited to less 

than 10 centimeters, due to the practical limitation of 

the current flame-brushing tapering systems.   

3. Direction absorption sensors 

Direct absorption optical sensor is based on 

Beer-Lambert Law:  

   out 0 ( )exp ( )I I C L             (1) 

where C is the gas concentration, () the 

absorption coefficient, and I0() is the light intensity 

without gas absorption. The use of the HCF enables 

compact all-fiber gas cells with longer effective 

absorption distance L and hence potentially higher 

sensitivity. However, direct absorption sensors with 

PBG-HCF gas cells in the near infrared only 

demonstrated noise equivalent concentration (NEC) 

of a few parts per million (ppm) in volume fraction 

for gases with relatively strong absorption (e.g., 

C2H2, NH3, CH4) [20, 21, 37–39]. The performance 

was found primarily limited by multi-path 

interference, since a PBG-HCF typically supports 

multiple core and cladding modes for short lengths 

of fibers. An AR-HCF would support a smaller 

number of modes [6, 17] and could achieve better 

performance. Attempt has been made to develop 

single mode single polarization HCFs [40], which 

could in principle minimize the mode interference 

noise and enable higher sensitivity. With multiple 

micro-channels fabricated along a few meters of 

PBG-HCF, ppm level gas detection with response 

time from 3 seconds to 60 seconds has been 

demonstrated [27, 28]. By using short lengths (e.g., 

5 cm to 10 cm) of PBG-HCF sandwiched between 

single mode fibers with mirrored ends, resonating 

Fabry-Perot gas cells with an effective optical length 

of several meters were demonstrated and achieved 

ppm level detection limit [41]. 

4. Photothermal interferometry gas 
sensors 

Photothermal spectroscopy detects the heat 

generated due to light absorption. A pump-probe 

configuration is typically used, as shown in Fig. 7. A 

pump laser beam is modulated in intensity and/or 

wavelength and tuned to an absorption line of a 

target gas, pump absorption results in periodic 

heating, which modulates the temperature, pressure, 

and density, and hence the refractive index 

distribution of gas material in the hollow-core. The 

probe wavelength is away from gas absorption and 

its accumulated phase is modulated [42, 43]. 

Pump

Probe Gas

r

z

L 

 
Fig. 7 Photothermal spectroscopy in a gas filled HCF. Pump 

and probe propagate in the HCF and interact with gas in the 
hollow-core. 

Assuming that the pump is propagating in the 

fundamental LP01 mode, its intensity profile may be 

approximated by Gaussian distribution with the 

highest intensity at the core center and the intensity 

is reduced at the core-cladding boundary. Pump 

absorption results in higher temperature at the core 

center, which reduces the refractive index of gas 
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material at the center and modulates the phase of the 

probe. The photothermal phase modulation is 

proportional to the overlap integral of the probe 

mode field with the induced refractive index 

distribution, and the amplitude of phase modulation 

per unit length along the HCF may be expressed as 

[43] 

   01
pump

d ( )
( ) ( )

d

z
k CP z

z


         (2) 

where Ppump(z) is the pump power at location z along 
the HCF, k is a constant depending on the frequency 
of pump modulation, which is determined by the 
HCF parameters, the wavelengths of the pump and 
probe, and the thermodynamic parameters of the gas 
material in the hollow-core, and 01(z) represents the 
phase of the LP01 mode. The total phase modulation 
may be determined by integrating (2) over the gas 
cell length L. For acetylene gas balanced with 
nitrogen in a hollow-core of 10 µm in diameter, with 
both the pump and probe around 1 550 nm and the 
pump wavelength aligned to the P(9) absorption line 
of acetylene at 1 530.37 nm, the phase modulation 
coefficient is on the order of 10–6

 rad/(mW·m·ppm) 
for modulation frequency up to ~1 MHz [44, 45]. 
For an HCF with a larger core diameter, the phase 
modulation is larger at low frequency but drops 
faster with increasing pump modulation frequency 
[46], as shown in Fig. 8.  
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Fig. 8 Frequency response of photothermal phase 

modulation for two HCFs with different hollow-core diameters. 
The solid lines are the simulation results, while the triangles and 
circles are the measured results [46]. 

The photothermal phase modulation may be 

detected by various interferometer configurations. 

The first demonstration used a Mach-Zehnder probe 

interferometer (MZI) with the HCF gas cell placed 

in one arm of the interferometer [43]. By using 

servo control to stabilize the MZI at quadrature, the 

photothermal phase modulation was linearly 

converted to intensity modulation at the 

interferometer output. The wavelength of the pump 

was modulated sinusoidally and ramped slowly 

across the P(9) absorption line of acetylene around  

1 530.37 nm. The second harmonic signal of the 

modulation frequency was detected for different 

concentrations of acetylene in nitrogen, as shown in 

Fig. 9(a). The NEC was estimated to be 2 parts per 

billion (ppb) with a 10-meter-long PBG-HCF gas 

cell. This is three orders of magnitude better than the 

direction absorption HCF sensors discussed in 

Section 3. The amplitude of the second harmonic 

increases with gas concentration and follows 

approximately a linear relationship for acetylene 

concentration up to 1%, as shown in Fig. 9(b), giving 

a dynamic range of nearly six orders of magnitude. 

The MZI detects the single-path phase 

modulation through the HCF, and the optical 

pathlengths of the two interfering beams may be 

made approximately balanced so that the phase 

noise of the probe source would not significantly 

affect the performance of phase detection. However, 

environment disturbance on the SMFs as well as 

Kerr nonlinearity in the SMFs, which form parts of 

the MZI, could result in unwanted phase modulation 

and affect the stability of phase measurement. 

Sagnac interferometer is a single fiber 

interferometer in which the two interfering beams 

propagate in the same fiber but opposite directions. 

Such a system detects the phase difference between 

two counter propagating waves in a fiber loop, in 

which the HCF gas cell is placed near one end of the 

loop fiber and the pump modulation frequency and 

the fiber loop length are selected in a coordinative 

manner to maximize the differential photothermal 

phase modulation. The optical pathlengths of the 
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Fig. 9 Results of the first photothermal gas detection 

experiment with a HCF: (a) second harmonic output for 
different gas concentrations and (b) results of dynamic range 
test [43]. 

interfering beams are always balanced, which 

minimizes the effect of source phase noise and even 
allows the use of a broadband source to reduce the 
effect of multi-path interference and coherent 

backscatter. The single fiber configuration is more 
robust than the MZI since the two counter- 
propagating beams are affected similarly by the 

environment and the phase difference is relatively 
insensitive to external disturbance. Quadrature 
operation may be achieved passively by using a 33 

loop coupler [45], as shown in Fig. 10(a), or using a 
frequency shifter inserted asymmetrically in the 
Sagnac loop [47]. With the Sagnac system shown in 

Fig. 10(a), detection of acetylene with NEC of   
356 ppb with 0.62-m-long PBG-HCF was 
demonstrated and the system has good stability with 

signal fluctuation of <0.87 dB over a period of     
6 hours [48], as shown in Fig. 10(b). 
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Fig. 10 Photothermal gas detection with a Sagnac 

interferometer to detect the phase difference between the 
counter propagating beams: (a) experimental setup. Output from 
the balanced detector (BD) contains the information of gas 
concentration; (b) results of stability test [48]. DFB laser: 
distributed feedback laser; EDFA: erbium doped fiber amplifier; 
BS: broadband source; DAQ: data acquisition card. 

A simpler and more compact configuration is the 

single fiber reflective Fabry-Perot interferometer 
(FPI) [49]. A low-finesse FPI was formed naturally 

by the 4% reflections at the joints between the HCF 
and the SMF pigtails, as shown in Fig. 11(a). By 
using servo control to tune the cavity length or the 

wavelength of the probe laser, the FPI can be locked 
at a quadrature point at which the photothermal 
phase modulation is converted to intensity 

modulation in the FPI output. With a 5-cm-long 
AR-HCF and a pump power of 125 mW delivered 
into the HCF, NEC of 30 ppb with 1 s lock-in time 

constant was achieved with detection system shown 
in Fig. 11(b). The dynamic range of the sensor was 
over 6 orders of magnitude. Allan deviation analysis 

showed that the NEC of 2.3 ppb can be achieved 
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with an integration time of 670 s. Gas filling into the 
HCF can be achieved via the HCF/SMF joints and, 
because of the short length of the HCF, the response 
time as short as 52 s has been demonstrated. 

In the FPI configuration, the phase difference 

between the interfering beams is twice that of the 

single pass phase modulation through the HCF and 

is relatively insensitive to environmental disturbance 

acting on the SMF transmission fiber. For a short 

length of HCF, the reflected probe beams come back 

into the SMF at approximately the same time (e.g., 

less than 1 ns difference for 15 cm long HCF); hence, 

low frequency disturbance on the SMF would affect 

the interfering beams similarly and has little effect 

on the phase difference. The Kerr nonlinearity of the 

SMF would have no effect on the differential phase 

modulation while the Kerr nonlinear coefficient of 

the HCF is two to three orders of magnitude smaller 

than the SMF. 

However, the FPI is intrinsically an unbalanced 

interferometer and the optical path difference 

between the reflected beams is twice of the HCF 

length. Hence, the phase noise of the probe source 

will be converted into intensity noise at the FPI 

output, which could exceed other noise contributions 

if the source linewidth is not sufficiently narrow 

and/or if the HCF is too long. 

In the reflective FPI, the probe light accesses the 

gas cell from one end of the HCF, leaving the other 

end free. This provides the flexibility of delivering 

the pump beam into the HCF, from the opposite end, 

with a fiber suitable for the pump wavelength (e.g., 

ultraviolet or infrared). This allows the use of a 

single HCF gas cell to detect different gas species 

with substantially different absorption wavelengths, 

assuming the HCF gas cell could transmit both the 

pump and the probe wavelengths simultaneously. 

Some of the current AR-HCFs have very broad 

transmission bands and would be ideal for such 

applications.  
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Fig. 11 Photothermal gas detection with a low-finesse FPI for phase detection: (a) schematic of the HCF FPI gas cell [46] and (b) a 
photothermal gas sensor with a low-finesse FPI for phase detection [46]. ECDL: external cavity diode laser; PC: polarization controller; 
LPF: low-pass filter; WDM: wavelength-division multiplexer; PZT: piezoelectric transducer; AOM: acoustic-optic modulator. 
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With the FPI probe configuration operating at  
1 550 nm and different pump lasers from 760 nm to 
3.5 , detection of oxygen, acetylene, methane, 
ethane, carbon monoxide, and carbon dioxide down 
to ppm to ppb level have been demonstrated [50–52], 
showing the potential wide range of applications of 
the technique. 

From (2), it can be seen that the amplitude of 
photothermal phase modulation is proportional to 
pump power. By placing the HCF inside a high 
finesse passive Fabry-Perot cavity [53] or an active 
laser cavity [54], it is possible to enhance the pump 
power level to achieve higher phase modulation and 
hence potentially better gas detection sensitivity. 

5. Mode-phase-difference photothermal 
sensors  

The performance of photothermal gas sensors 
may be substantially improved by exploiting the 
unique modal properties of the optical fibers. By use 
of an HCF that supports dual transverse modes, i.e., 
the LP01 and LP11 modes, and detecting the 
photothermally induced phase difference between 
the two modes, we have demonstrated ultra-sensitive 
gas sensors down to parts per trillion (ppt) level [29]. 
Figure 12 shows the basic principle of 

mode-phase-difference photothermal spectroscopy. 
The pump beam is launched into the fundamental 
LP01 mode that has an approximately Gaussian 
intensity distribution in the fiber cross-section. The 
probe beam propagates in both LP01 and LP11 modes, 
which can be achieved by fabricating a long period 
grating (LPG) on the HCF to selectively couple a 
fraction of the probe LP01 mode power into the LP11 
mode [55]. With offset alignment at the output 
HCF-SMF joint to form a dual-mode interferometer, 
the differential phase modulation can be detected. As 
mentioned earlier, the refractive index distribution 
due to pump absorption follows an inverse Gaussian 
profile, with the largest negative refractive index 
change occurring at the center of the HCF. The 
mode fields of the probe LP01 and LP11 modes are 
different, one has an approximate Gaussian profile 
while the other has a two-lobe distribution, which 
overlap differently with the nonuniform refractive 
index distribution and result in unequal phase 
modulation for the two probe modes. The phase 
modulation for the LP01 is larger than that of the 
LP11 mode, and the differential phase modulation is 
sensitive to gas absorption in the hollow-core and 
may be expressed as [29]: 
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Fig. 12 Principle of mode-phase-difference photothermal spectroscopy [29]: (a) scanning electron microscope image of a two-mode 

AR-HCF, (b) and (c) measured near field image of LP01 ( ) and LP11 ( ) guiding modes of the AR-HCF, (d) pump propagating in 
the LP01 mode, (e) refractive index change (yellow-red) due to pump absorption of gas molecules and the field distributions of the 
probe LP01 and LP11 mode (blue), and (f) practical implementation of a dual-mode interferometer with an LPG near the input end of 
the HCF and offset alignment at the output HCF-SMF joint.  
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where k* is the differential sensitivity coefficient and 

is about 20% of k in (2). However, since the two 

probe modes propagate along the same HCF, the 

sensitivity of the differential phase  to external 

perturbation is much smaller than that the 

fundamental mode phase 01, and ratio is        

~(n01n11)/n01, which is in the range of 10–2 to 10–3. 

This enhances the signal to noise ratio significantly 

and enables extremely sensitive photothermal gas 

sensors. 

6. Photoacoustic sensors 

HCFs may be used as highly efficient 

photoacoustic cells for gas detection based on 

photoacoustic spectroscopy. A wavelength or 

intensity modulated pump laser tuned to a gas 

absorption line generates acoustic wave via the 

photoacoustic effect. If the pump modulation 

frequency matches that of an acoustic mode of the 

gas filled HCF, the acoustic wave is resonantly 

amplified, which modulates the phase of a probe 

mode propagating in the HCF. A gas filled HCF may 

support two types of acoustic mode: the air modes 

that account for the density change of gas in the 

hollow core and the mechanical modes that are the 

displacements of the silica microstructure. Similar to 

the photothermal spectroscopy, the acoustic modes 

may be probed by detecting the phase modulation of 

the fundamental LP01 mode with one of the laser 

interferometer configurations described in Section 4 

or the differential phase modulation between the 

LP01 and LP11 modes with the dual-mode fiber 

interferometer in Section 5. Figure 13 shows the 

detected differential phase modulation as a function 

of pump modulation frequency for a 70-cm-long 

AR-HCF filled with 106 ppm of acetylene in 

nitrogen at 1 bar, in which the pump laser 

wavelength is tuned to center of the P(13) 

absorption line of acetylene around 1 532.8 nm. The 

mechanical modes of the capillaries (capillary 

resonance, w1) and the air mode (radial resonance of 

gas, R02) are clearly visible. The capillary resonances 

may be used to characterize the fiber microstructure. 

With the pump modulation frequency to a particular 

capillary resonance and the tuned pump laser 

wavelength across a gas absorption line, high 

sensitivity gas detection may be achieved. 
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Fig. 13 Photoacoustic spectroscopy of a 70-cm-long 

AR-HCF filled with 106 ppm of acetylene in nitrogen at 1 bar. 
The white bar in the SEM image is 20 micrometers.  

7. Raman sensors 

Raman spectroscopy can detect Raman-active 

gases that do not necessarily have an absorption line 

in the wavelength range of interest. However, the 

gas Raman signal in a free space system is 

extremely weak, limiting the usefulness of the 

technique for high sensitivity gas detection. MNOFs 

provide a compact platform for stronger light-gas 

interaction over a longer distance, which enhances 

Raman signal significantly and enables gas sensors 

with higher sensitivity. Earlier works on fiber 

Raman gas sensors operate in the visible and use 

HCF gas cells in combination with bulk optical 

components [56–59]. More recently, all-fiber gas 

sensors using stimulated Raman scattering (SRS) 

with HCFs as well as NFs have been demonstrated 

[60–62]. The SRS sensors have achieved ppm level 

NEC for the detection of hydrogen, which will be 

discussed in this section.  

7.1 HCF SRS sensors  

SRS involves interaction of gas molecules with 
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two laser beams, a higher power pump with 

frequency pump and a lower power probe (Stokes) 

with frequency probe. When the frequency 

difference diff=pumpprobe matches a molecular 

Raman transition 0, as shown in Fig. 14(a), energy 

from the pump will be transferred to the probe, 

resulting amplification of the probe and depletion of 

the pump. In the meantime, refractive index (RI) 

change (dispersion) is also induced in the vicinity of 

Raman transition, as shown in Fig. 14(b). The 

magnitudes of gain and dispersion are both 

proportional to pump optical intensity Ipump (instead 

of optical power) and hence, a smaller mode field 

area would enhance the Raman gain and dispersion 

signals.  
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(b) 

Fig. 14 SRS of hydrogen: (a) energy level diagram showing 
the SRS process. g: ground state; n: rotational state; the dotted 
line: intermediate state; (b) gain and dispersion around a Raman 
transition [62]. 

Stimulated Raman gain (SRG) spectroscopy 

detects the Raman amplification of a probe beam 

near a Raman transition. The SRG experienced by 

the probe beam may be expressed as [61, 63] 

0 pump
probe 2

( )
1+

g I L
G 


                (4) 

where =2(0diff)/R is a linewidth-normalized 
frequency detuning parameter, L is the length of 
HCF, and g0 is the Raman gain that is proportional 
to gas concentration C. 

All-fiber hydrogen detection based on SRG 
spectroscopy was firstly demonstrated using the 
setup shown in Fig. 15. The wavelengths of the 
pump and Stokes beams are ~1 532 nm and       
~1 620 nm, respectively, which matches the S0(0) 
rotational Raman transition of hydrogen with Raman 
shift 0 =354.36 cm–1. The probe wavelength was 
fixed while the pump wavelength was modulated 
sinusoidally at ~50 kHz and tuned slowly across the 
Raman transition. The second harmonic signal at 
~100 kHz was detected and found increasing linearly 
with hydrogen concentration. The second harmonic 
was also increasing approximately linearly with 
pump power while the noise level remained 
relatively unchanged. With a pump power of    
~37 mW in a 15-m-long HCF, the detection limit in 
terms of NEC for a signal to noise ratio of unity was 
~140 ppm for 1 s lock-in time constant.  

Stimulated Raman dispersion (SRD) 
spectroscopy detects the Raman-induced RI 
modulation near the Stokes wavelength. The 
induced RI modulation can be detected by 
measuring the phase modulation of the probe beam 
over length L using an optical interferometer, which 
may be expressed as [62, 64]: 

probe 02
probe

2
( ) ( )

1
n L

    
 

       
    (5) 

where 0 pumpg I L 0 = / 2 is the peak phase modulation 
at the Raman resonance. 

SRS-induced dispersion in a hydrogen-filled 
HCF was detected with the MZI system shown in 
Fig. 16(a). The MZI was stabilized at quadrature by 
use of a servo-loop. A 7-m-long HCF was filled 
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with 20% hydrogen balanced with nitrogen and 
placed in one arm of the interferometer. The pump 
beam was wavelength modulated and tuned around 
1 532 nm to generate time-varying dispersion, which 
modulated the phase of the probe at 1 620 nm. Figure 

16(b) shows the second harmonic signal from the 
lock-in amplifier for 20% hydrogen in nitrogen for 
different pump power levels. With pump power of 
~100 mW in the hollow-core, the NEC was 
estimated to be 25 ppm for 1 s lock-in time constant. 
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Fig. 15 Experimental setup of hydrogen detection with SRG spectroscopy[61]. TF: tunable filter.  
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Fig. 16 Hydrogen detection with SRD spectroscopy: (a) setup for laser induced dispersion measurement, (b) second harmonic 

lock-in output when pump wavelength is tuned across the Raman transition for four different pump power levels and 20% hydrogen, 
and (c) peak-to-peak value of the second harmonic for 20% hydrogen and the standard deviation of noise as functions of pump power 
level [61]. 
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7.2 NF SRS sensors 

With the same setup as shown in Fig. 15 but the 

HCF replaced by an NF gas cell, SRG-based 

hydrogen detection was demonstrated [63]. The NF 

has a length of ~5 cm and a diameter of ~700 nm in 

the waist region. It was taper-drawn from a standard 

SMF28 fiber and spliced to SMFs with low     

loss. Figure 17(a) shows the measured second 

harmonic gain signals for different gas concentration 

as the pump wavelength was tuned across the   

S0(0) rotation Raman transition of hydrogen.    

The Raman signal increases linearly with   

hydrogen concentration from 0 to 50% hydrogen 

and nonlinearity appears from high hydrogen 
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Fig. 17 Hydrogen detection based on SRG spectroscopy with 

an NF: (a) second harmonic output for pump tuning across the 
S0(0) Raman transition of hydrogen and (b) SRS signal for 
hydrogen concentration from 0 to 100% [62].  

concentration, as shown in Fig. 17(b). For lock-in 

time constant of 10 s and pump power of 300 mW, 

the NEC was estimated to be 8.6 ppm, giving a 

dynamic range of five orders of magnitude.     

The smaller mode field area and excellent mode 

quality of the tapered NF ensure higher Raman   

gain signal and minimal multi-path interference 

noise as compared with the HCF gas cells, which 

enables higher detection sensitivity. The exposed 

evanescent field allowed a faster response time of 

less than 10 s. 

8. Distributed fiber gas sensors 

Distributed gas sensing would have many 

important applications such as pipeline gas leakage 

monitoring. The first distributed gas detection based 

on absorption spectroscopy was demonstrated with 

an optical time domain reflectometer (OTDR) and a 

pulsed DFB laser with its wavelength tuned to a gas 

absorption line acetylene [3]. The pulse duration was 

~10 ns, giving a spatial resolution of ~1 m over a 

length of 75 meters of PBG-HCF fiber.  

Recently, distributed gas detection along a 

200-m-long HCF was demonstrated with 

photothermal spectroscopy. The basic principle is 

shown in Fig. 18(a). The absorption of the 

modulated pump in a PBG-HCF generated 

distributed phase modulation along the fiber. The 

phase modulation frequency was determined by the 

pump modulation while its amplitude was 

proportional to local gas concentration, as given by 

(2). The backscattering in the PBG-HCF, primarily 

due to surface scattering of the hollow-core, was 

about an order of magnitude higher than Rayleigh 

scattering in a standard SMF around 1 550 nm. The 

backscattered waves carried the information of 

distributed photothermal phase modulation, which 

could be detected by a phase OTDR. Preliminary 

experiments with a dual-pulse phase OTDR 

achieved an NEC of ~5 ppm acetylene in nitrogen 

with a spatial resolution of ~30 m [64].  
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Fig. 18 Distributed gas detection with photothermal 

interferometry: (a) distributed gas detection with photothermal 
interferometry. Backscattered light is used to detect the 
distributed phase modulation along the fiber via a phase OTDR 
and (b) results of distributed gas detection along a 200-m-long 
HCF. The upper part shows the fiber alignment and segments of 
sensing fiber. The sensing HCF (HC-1550-02) is from 130 m to 
338 m. P1 is the SMF/HCF joint and the larger signal at P1 is 
due to Kerr cross-phase modulation in the silica fiber. P2 and P3 
are the two spatial locations (251 m and 335 m) where the gas is 
loaded into the HCF [64]. 

More recently, distributed detection of hydrogen 

was performed based on SRG spectroscopy. A 

pulsed pump and a continuous-wave probe were 

used, as shown in Fig. 19(a) [65]. The frequency 

difference between the pump and probe was tuned to 

the S0(0) Raman transition of hydrogen. The probe 

beam was counter-propagating with the pump light 

and experienced Raman gain in the region filled 

with hydrogen when the pump pulse overlaps with 

the probe beam. The pump pulse entered the HCF 

from the SMF transmission fiber and the probe 

beam experienced firstly the SRG of the input SMF. 

The pump pulse then traveled down the HCF and the 

probe experienced SRG of hydrogen at a location 

where hydrogen molecules were present in the 

hollow-core. The pump pulse eventually reached the 

output SMF pigtail and the probe experienced the 

SRG of the output SMF.  
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Fig. 19 Distributed detection of hydrogen along a HCF with 

SRG: (a) principle of distributed hydrogen sensing with SRG 
spectroscopy in HCF and (b) measured SRG trace along the 
100-m-long HC-1550-02 HCF. The inset shows the SRG signal 
around 88 m where 4% hydrogen was present [65].  

Figure 19(b) shows the measured distributed 

SRG signal of hydrogen over a 100-m-long 

PBG-HCF. Micro-channels were fabricated over a 

2.2-m-long section around 88 m and were exposed to 

4% of hydrogen at the pressure of 1 atm. The two 

larger gain peaks at 0 m and 100 m were due to SRG 

of SMF pigtails. It marked the beginning and ending 

of the sensing HCF. The gain peak 88 m was due to 

the SRG of hydrogen. By comparing the SRG at  

88 m with the standard deviation of fluctuation from 

40 m to 80 m, an NEC of 833 ppm was estimated.  

9. Conclusions 

MONFs offer significantly advantages over the 

free space systems for linear and nonlinear 

spectroscopic gas sensing applications. The reduced 

mode field area, enhanced interaction length, and 

unique optical, thermal, and acoustic properties of 

the MNOFs enable gas sensors with significantly 

improved performance as well as creation of novel 

sensing concepts that are not possible with free 

space systems. MNOF gas sensors based on direct 

laser absorption, photothermal, photoacoustic 
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Brillouin, and Raman spectroscopies have already 

demonstrated comparable or better performance 

over some of the complex free-space systems for a 

wide range of gas species. The compact size of the 

MNOF gas cells and possibility of seamless 

integrating them with fiber-based components and 

sub-systems would allow cost-effective 

interferometric detection to achieve superior 

performance.  

Research is continuing in developing MNOF gas 

cells with better mode quality and polarization 

maintaining capability, in developing cavity 

enhanced system to achieve even better detection 

sensitivity and extending the applications of  

MNOF cells to the detection of trace substance in 

liquid [17]. 
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